
Chapter 2

Design Issues

Part 2.3

Above Message Passing

Additional structure above
message sending:

z remote procedure call

z client-server

z multicast

Remote Procedure Call
(RPC)

z Invented by Bruce Jay Nelson
z idea:

y hide message communication by a layer
which simulates a procedure call!

y Familiar, simple semantics

z The catch:
y semantics are not Familiar or simple
y see Chapter 5

Client-server:

z problem: server blocked time must be

MINIMAL, so

z server can be built as administrator

plus n workers

z workers upon instantiation do a blocking send

to admin with block on reply

Administrator model

z hence they are waiting . . . So,

z admin accepts a work request and REPLIES to
a

a blocked worker with the job to be done

z worker unblocks & does the work

Administrator model

z admin returns at once to checking input

queue or waiting on client requests

z worker when done repeats the send to server

(with result) and blocks again on reply

from administrator

z admin sends to client . . .

client-server binding

z cannot be done at writing time

z clients unanticipated at server coding time

z must be allowed to use the server.

z So . . .

Client-server
(administrator)

server

client

messages

worker worker worker

client

client-server binding

z server upon creation registers w name service

using well-known service name

(e.g., print_service)

z clients get the name translated at runtime &

thus can communicate with the server

Group multicast

z WHY?

Group multicast - why?

z locate an object by multicast (ARP)

z fault tolerance: multicast of an idempotent

operation request to a set of servers

z update of replicated databases

Distributed OS structure:

Kernel plus servers model

DOS structure

z not a single lump of code

(Unix syscall ifce & OS) but

z an extensible set of servers
y each with its own interface (arggh!) and

y all using kernel services such as

DOS structure: kernel services

y memory allocation & protection

y process management

(create, destroy, schedule)

y ipc

y device handlers (maybe not)

z all provided by a protected

micro (smaller than unix's) kernel which

abstracts the hardware

Multiserver DOS structure

z plus servers providing:

x peripheral device service (printers, archival store)

x filesystem

x timing services

x security

x name translation

x email . . .

z Everything an OS did, and more .

Summary

z not

Apps

Language support

OS

Hardware

z but
Applications

Dist pgmg
support

Open
Services

Replicated kernel

hardware

z Realized as

kernel kernel

net

Allocating Workload

